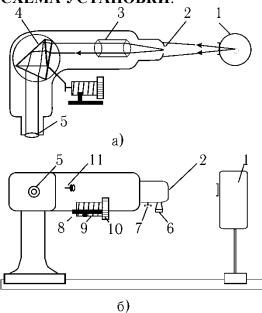
Южно-Уральский Государственный Университет Кафедра физики наноразмерных систем

Лабораторная работа № 8

ИЗУЧЕНИЕ СПЕКТРОВ ИСПУСКАНИЯ


Выполнил(а)

гр.

Проверил

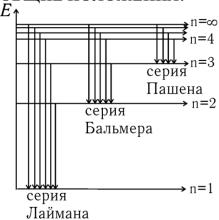

ЦЕЛЬ РАБОТЫ:

СХЕМА УСТАНОВКИ:

- $\frac{1}{2}$
- 3 –
- 1
- 5 –
- 6 –
- 7 –
- 8 –
- 9 –
- 10 -
- 11 -

общие положения:

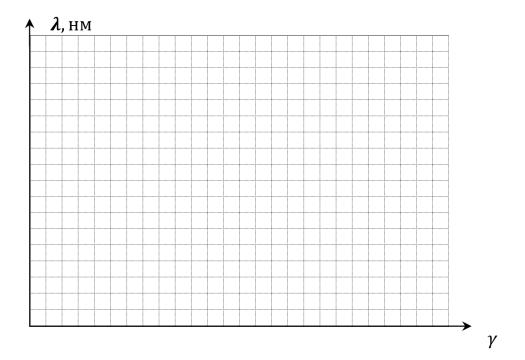
$$\frac{1}{\lambda} = R\left(\frac{1}{n^2} - \frac{1}{k^2}\right)$$

- λ –
- n –
- k -

$$R = 1,097 \cdot 10^7 \,\mathrm{m}^{-1} -$$

Задание 1. Определение точности измерения

	Sugarine 1. and additional to meetin maked anim				
No	γ_i	$\bar{\gamma} - \gamma_i$	$(\bar{\gamma}-\gamma_i)^2$	$\lambda =$	
изм.					
1				$\sigma_{\gamma} = \sqrt{rac{\sum (\overline{\gamma} - \gamma_i)^2}{N(N-1)}} =$	
2				$P = ; N = ; t_{P,N} =$	
3				Абсолютная погрешность:	
4				$\Delta_{\gamma} = \sigma_{\gamma} \cdot t_{P,N} =$	
5				Относительная погрешность:	
$\bar{\gamma} =$		$\sum (\bar{\gamma} - \gamma_i)^2$	=	$\delta_{\gamma} =$	


Окончательный результат:

$$\gamma = \pm$$

Вывод:

Линия	Длина волны	Отсчет по шкале			
спектра ртути	λ, нм	<i>γ</i> 1	72	<i>Y</i> 3	$ar{\gamma}$
Фиолетовая первая	405,6				
Фиолетовая вторая	407,8				
Синяя (самая яркая из семейства синих)	435,8				
Голубая первая	491,6				
Голубая вторая	494,0				
Зеленая яркая	546,1				
Желтая первая	577,0				
Желтая вторая	579,0				
Красная (последняя яркая из красных)	690,7				

Ститонт	Пото	.202
Студент:	Дата:	.202

Вывод

Задание 3. Определение постоянной Ридберга

n=2; серия Бальмера					
Линии спектра		Отсчёт по барабану	Длина волны	R,	
водорода	k	у, град.	λ , HM	10^7 m^{-1}	
Красная Нα	3				
Синяя Н _β	4				
Фиолетовая Ну	5				
Среднее <i>R</i> :					

Постоянная Ридберга

$$R = \frac{1}{\lambda \left(\frac{1}{n^2} - \frac{1}{k^2}\right)} = \frac{1}{\lambda \left(\frac{1}{n^2} - \frac{1$$

Оценка погрешности измерений

Относительная погрешность:

Примем
$$\delta_R = \delta_{\gamma} =$$

Абсолютная погрешность:

$$\Delta_R = \delta_R R = \qquad \qquad = \qquad \qquad ()$$

Окончательный результат:

$$R = \pm$$

Вывод:

a		202
Стулент:	Лата:	202 .