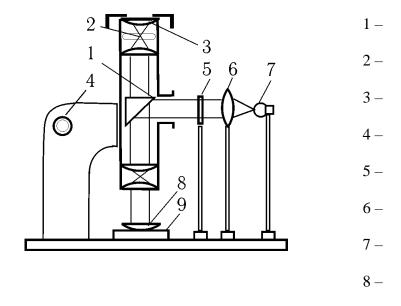
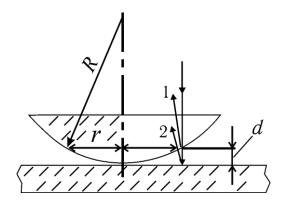
Южно-Уральский Государственный Университет Кафедра физики наноразмерных систем

Лабораторная работа № 2


ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА

9 –


Выполнил(а)						
гр						
"	···	20r				
Пров	верил					
"	,,	20				

ЦЕЛЬ РАБОТЫ:

СХЕМА УСТАНОВКИ И ОБОРУДОВАНИЕ:

общие положения:

$$R$$
 –

d –

r –

$$R^{2} = r^{2} + (R - d)^{2};$$
$$d = \frac{R^{2}}{2r}$$

$$\Delta y$$
 –

$$\Delta y = (2m+1)\frac{\lambda}{2} -$$

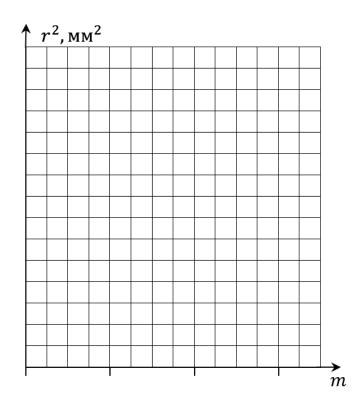
λ –

$$\Delta y = 2dn + \frac{\lambda}{2} -$$

$$r_T^2 = \frac{m\lambda R}{n} \pm \frac{2dR}{n}$$

$$r_T = \sqrt{\frac{(2m+1)\lambda R}{2n}}$$

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ:


λ = (<u>±</u>) нм;	$\beta = 1,38$	3 · 10 ^{−2} 	мм ре деление			
номер кольца т		1	2	3	4	5	6	7
числовые отметки	слева							
колец Ньютона	справа							
диаметр <i>D</i> , мал. дел	кольца I.							
радиус кольца r , мал. дел.								
радиус $r = r \cdot \beta$, м	кольца им							
<i>r</i> ² , м	M ²							

Средние значения

m	
r^2 , MM^2	

Студент: ______ Дата: ____. ___.202__.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ:

Угловой коэффициент

Радиус кривизны линзы:

$$R = \frac{K}{\lambda} = \frac{1}{\lambda} = \frac{1}{\lambda}$$

ОЦЕНКА ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

Относительная погрешность:

$$\delta_R = \sqrt{(\delta_K)^2 + (\delta_\lambda)^2} =$$

$$\delta_K =$$

$$\delta_{\lambda} =$$

Абсолютная погрешность:

$$\Delta_R = \delta_R \cdot R = \qquad \qquad = \qquad \qquad (\qquad)$$

Окончательный результат:

$$R = \pm$$
 (

вывод: